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Polymer depletion interaction between two parallel repulsive walls
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The depletion interaction between two parallel repulsive walls confining a dilute solution of long and
flexible polymer chains is studied by field-theoretic methods. Special attention is paid to self-avoidance be-
tween chain monomers relevant for polymers in a good solvent. Our direct approach avoids the mapping of the
actual polymer chains on effective hard or soft spheres. We compare our results with recent Monte Carlo
simulations[A. Milchev and K. Binder, Eur. Phys. J. B, 477 (1998] and with experimental results for the
depletion interaction between a spherical colloidal particle and a planar wall in a dilute solution of nonionic
polymers[D. Rudhardt, C. Bechinger, and P. Leiderer, Phys. Rev. B&{t1330(1998].
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[. INTRODUCTION the EV interaction and is amenable to a field-theoretical
treatment via the polymer magnet analogy. The basic ele-

In polymer solutions the overlap of depletion zones forments in this expansion are partition functicﬁigg(r,r’) for
monomers due to repulsive confining walls or mesoscopichain segments that have no EV interactias indicated by
particles dissolved in the solution induces an important andhe superscripf0]) and with the two ends of the segment
tunable effective interaction potentigl]. For example, this fixed atr andr’. This perturbative treatment has to be car-
depletion interaction successfully explains phase diagrams dgfed out in the presence of confining geometries. We con-
colloid-polymer mixtured2—-4]. Recent experimental tech- sider two structureless parallel walls éhdimensions and a
niques facilitate even the measurement of the depletion forcdistanceD apart so that in coordinates-(r|,z) the surface
between a wall and aingle colloidal particle[5-7]. In the  of the bottom wall is located at=0 andr; comprises the
context of such solutions confined to thin films and porousd—1 components of parallel to the walls. The surface of
materials the geometry of two parallel walls has been extenthe upper wall is located at=D. The interaction of the
sively studied as a paradigmatic cdSe-14. polymer with the nonadsorbing walls is implemented by the

For strongly overlapping chains as realized isemidilute  boundary condition that the segment partition function and
polymer solution, chain flexibility is taken into account thus the partition function for the whole chain vanishes as
within self-consistent field theory or within the framewaork of any segment approaches the surface of the Wai®3, i.e.,
phenomenological scaling theofi5-17. On the other
hand, in adilute polymer solution different chains do not Z[S%]g(r,r’)ﬂo, z,z2’—0D. (1.1
overlap so that the behavior of the polymer solution is deter-
mined by the behavior of a single chain. To a certain extenfor the present purpose the only relevant property that char-
and under certain circumstances, a single chain can be moécterizes one of the polymer chains is its mean square end-
eled by a random walk without self-avoidan@éeal chain. ~ to-end distance in the bulk solution, which we denote by
In three dimensions this situation is closely realized in adR 2 [24—28; for convenience we include the spatial dimen-
so-called#-solvent[18]. If the solvent temperature is below siond as a prefactor. The results presented in the following
the #-point (poor solvent the polymer coils tend to collapse are obtained foid=3 both for ideal chains and for chains
[19,20. However, in the common case that the solvent temwith EV interaction. In Sec. Il we present our results for the
perature is above th@-point (good solvent the excluded interaction potential and the force between two parallel
volume (EV) interaction between chain monomers becomegvalls. We note that for chains with EV interaction these
relevant so that the polymer coils are less compact than theesults are valid only in the limib>R, because our theo-
corresponding ideal chains. The emphasis in this work is ometical approach is not capable of describing the dimensional
the latter situation and we investigate the effect of the EVcrossover to the behavior of a quasdi-{1)-dimensional sys-
interaction on the depletion interaction between two paralletem which arises foD<R,. In Sec. lll we compare these
walls as compared to the case of confined ideal chains.  results with the simulation data of Milchev and Bind&#].

By focusing onlong flexible chains in a system of meso- In Sec. IV we apply the Derjaguin approximation in order to
scopic size we obtain mostlyniversalresults that are inde- obtain from the results in Sec. Il the depletion interaction
pendent of microscopic detail48,21—-28. Due to the uni- between a spherical particle and a wall in a dilute polymer
versality of the corresponding properties it is sufficient tosolution and compare it with the corresponding experimental
choose a simple model for calculating these results. For ouresults of Rudhardt, Bechinger, and Leidefi@}.
investigations we use an Edwards-type mddé,21,23 for In view of the complexity of the actual experimental sys-
the polymer chain, which allows for an expansion in terms oftems involving spatially confined colloidal suspensions dis-
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solved in a solution containing polymers, in the past the cordivided into the volumé), within the slit and the volum#,
responding theoretical descriptions relied on suitable coarsgutside the slit. Since the polymer chain cannot penetrate the
grained, effective models and on integrating out less relevangalls, whose lateral extensions are large(r,r') is nonzero
degrees of freedom. The gross features of these systems cgfly if bothr andr’ are in}) or in V5 so that

be obtained by mapping the polymers onto effective hard

spheres as pioneered by Asakura and Oog&&gIn a more

refined description Louist al.[28,29 derived effective in- Z|\(D)=f dde dr’ Z(r,r")

teraction potentials between polymer coils such that they be- v v

have like soft spheres. This approach allows one to capture . .

the crossover in structural properties to semidilute and dense =f dero(Z)ﬁLf dr 2,(2), 2.3
polymer solutions. Based on such a model Loeiisl. [29] Vo Vi

have calculated, among other things, the corresponding. . ) ) )
depletion energy between two parallel repulsive plates. BeWith Z0,1(2)=/fy, dr"Z(r,r"). In the thermodynamic
sides presenting the depletion energy for ideal chains ifimit V—RY the logarithm Ing;;/2) in Eq.(2.1) can be ex-
terms of an expansion introduced by Asakura and Oosawganded using Eqs2.2) and(2.3), i.e.,

they find the occurrence of repulsive depletion forces in an

intermediate regime ob upon significantly increasing the Z)(D) Z(D)-Z2

polymer density. In our present completely analytic study we ! ( z )=In( 1+ A )

focus on dilute polymer solutions, for which the depletion

forces turn out to be always attractive, by fully taking into 1 ZH(D)—VZ,)
account the flexibility of the polymer chains and the self- —’T/Z—
avoidance of the polymer segments with a particular empha- b
sis on long chains. This complementary point of view allows 1 20(2)
us to make contact with the Monte Carlo simulation data in == J ddr<ﬂ—— 1)
Ref. [14] and with the experimental data in R¢€]; these V| Jvo Zy
comparisons have not been carried out before to our knowl- 2(2)
edge. +f ddr( ! —1) , (2.4)
V) Zb
Il. EFFECTIVE INTERACTION BETWEEN PARALLEL
WALLS where the ratio £,(D)— 2)/Z is of the orderV, /V, which

tends to zero because the slit widihis fixed. Since in the
thermodynamic limit the leading contribution to the first in-
In a dilute polymer solution the interaction betwelin tegral of Eq.(2.4) is independent of the slit widtB we find
different chains can be neglected so that the total free enerdgr Eq. (2.1
of the system id\ times the free energy of a single chain. We
consider the polymer solution within the slit to be in equilib- Z,(2)
SF=—npkyT L dr -
|

A. Grand canonical ensemble

rium contact with an equivalent polymer solution in a reser- B
b

voir outside the slit so that there is exchange of polymer coils
between the slit and the reservoir. Tiiee energy of inter-

actionbetween the walls in such a grand canonical ensemble _ f dr 2(2) -1 2.5
is given by Vi z, D= ’
oF = —kBTN[ In(ZI(D)) —In(ZI(D:OO) J (2.2 with the number density,=N/V of the polymer chains in
Z 2 the bulk solution. The second integral in Ef.5) reduces to

the sum of two half-spacgHS) integrals which yield contri-
butions proportional to the areaof the walls[25]:

Z,

where Z)|(D) is the partition function of one polymer chain

in a large volume) containing the walls an& is the corre-

sponding partition function of one polymer chain in the vol- A

ume V without the walls. In the thermodynamic limit f ddr<Z|A(Z) _ 1) ‘ :zf
Vi -

V—RY one hag24-24 Zy

Z-VZ, (2.2 _on Ao
NpkeT’

(2.6)

with Z,= [ed% ' Z,(r,r') and whereZ,(r,r') denotes the

partition function of one polymer chain in the unboundedwhere we have introduced the surface tensian between
solution with its ends fixed at andr’. Correspondingly, the polymer solution and the confining watlompare Egs.
Z(r,r") denotes the partition function of one polymer chain(1.7) and (2.41) in Ref. [25]]. Note that the mean polymer
within the volume)’ containing the parallel walls and with density within the slit is determined by the bulk density,

its ends fixed ar andr’. The volumeV=),+V, can be i.e., in the grand canonical ensemble the chemical potential
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u of the polymer coils is fixed instead of the numbér of C. Free energy of interaction and mean force

polxmeré:pilstinEthe Zli(seedsze%. iLE‘t al g cal We employ the polymer magnet analof$8,21-25 in
ccording to Eqs(2.5 and(2.§) the total grand canonical order to calculate the partition functio@s(z), Z,(z), and

free energy) of the polymer solution within the slit, - ) ] )
Z, as needed in Eq$2.5), (2.6), and(2.8) for a single chain

Q=-n,kgTADw, (2.7 with EV interaction. They are functions of the parameigr
which characterizes the strength of the EV interactionland
with the dimensionless quantity which determines the number of monomers of the chain such
A thatl, equalsR =R 7/ 2 for an ideal chain in the bulk, i.e.,
1o Z(2) for uy=0. The well-known arguments of the polymer mag-
©= Bfo dz z, (28 net analogy 18,2123 imply for the present case the corre-
spondence
can be decomposed as Z||(ryr,;I—OrDvUO):‘CtOﬁLO<(D1(r)CDl(r’)>|N=O
(2.19

szfb‘FZfs'i‘ of. (293
phB between Z;(r,r’) and the two-point correlation function

On the right-hand sid&hs) of Eq. (2.99 appear the reduced (P1(N®1(r")) in an O(N) symmetric field theory for an
bulk free energy per unit volume N-component order parameter fiefi=(d,, ..., d,) in
the restricted volume/, . In Eq. (2.14) the operator

fp=—1, (2.9p
— Lot
the reduced surface free energy per unit area EtoﬂLo_z_T,iLdtOe o0 (219
- d (2.99 acting on the correlation function is an inverse Laplace trans-
® npkgT form with C a path in the complek, plane to the right of all
) ) singularities of the integrand. The Laplace conjudatef L
and the reduced free energy of interaction and the excluded volume strengih appear, respectively, as

the “temperature” parameter and as the prefactor of the

oF 2.99 (®??term in the Ginzburg-Landau Hamiltonian,

T kg TA’

of

1 t u
_ d.) — 2, 022, 20 222
B. Canonical ensemble H{P}= fvd r(Z(V(D) T O (O
If instead of the chemical potential the numbemN, of (2.18

polymer coils in the slit is used as independent variable, the . _ - .
total free energyF of the polymer solution within the slit in Which provides the statistical weight expti{®}) for the

the canonical ensemble follows frof} as the Legendre field_theory. The requirement_in EqL.1) desc_ri_bing the re-
pulsive character of the walls imposes the Dirichlet condition

transform
FIND=Q[u(N) ]+ n(N) Ny, (2.10 @(r)=0, z=0D, (217
where() is given by Eq.(2.7). The chemical potentigk is  on both walls. This corresponds to the fixed point boundary
related ton,, via [30] condition of the so-called ordinary transitipd1,32 for the
field theory. For the renormalization group improved pertur-
u=kgT In(npAd), (2.11 bative investigations we use a dimensionally regularized

continuum version of the field theory, which we shall renor-
where A is the thermal de Broglie wave length of the par- malize by minimal subtraction of poles in=4—d [33]. The
ticles, i.e., polymer coils. Equatiof®.7) implies for dilute  basic element of the perturbation expansion is the Gaussian
solutions two-point  correlation ~ function (or  propagator
(Pi(r) ®;(r'))jo; where the subscripf0] denotesuy=0
[see Eq(Al) in the Appendi}.

The loop expansion to first order in, and the renormal-
ization of w in Eq. (2.8) are completely analogous to the
ThusF(N,) is given by outline in Sec. Il A of Ref[25]. Some key results of this

procedure relevant for the present case are given in the Ap-

N, Ad) 213 pendix. The final results fofg and 6f on the rhs of Eq.
ADw ' (2.93 are given by Eqs(A5) and (A6) in the Appendix,

where N=0 for the present polymer case amé=1 in d
with o from Eg. (2.9). =3.

o0Uw) Ny a0 Q)
e (9# _kBT ﬁnp_ kBT

(2.12

F(N|)= _kBT N|+kBT N| In(
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0 . - ior for D/'R, large, i.e.,y>1. As expected the depletion
potential and the resulting force aneeakerfor chains with
EV interaction than for ideal chains, because the EV interac-
tion effectively reduces the depletion effect of the walls. The
—— ideal chains, full expression inset of Fig. 1 shows botl® andI" for ideal chains. The
5 05 ——— ideal chains, expansion narrow slit limits read
R A — good solvent, expansion 2
/ O(y—=0)=——+y (2.21
/ N
and
(a)
—2) ' ' ' ' I'(y—0)=—1. (2.22
""" Deviations from the linear behavior in ER.21) become
0 : visible only fory=3. In the opposite limity— o the leading
_ behavior for ideal chains is given by
>
~ .': :L 0, 2 1
B 05| 5 - oy o) \ﬁ_ Ly
e / % r O(y—x)=—4 7_ryze (2.23
I 1 |
/
i : : and
/ 0 1 2 3
d b 21
s | 1 1 L 1 ( ) F(y—>00)=—4\/:—e_y2/2. (2.2‘9
0.5 1 15 2 25 3 ™y
y The depletion potential in terms of the scaling functy)

FIG. 1. Scaling functionga) ©(y) for the depletion interaction is attractive. But whether the bulk contributi@f, has to be

potential and(b) T'(y)=—d@/dy for the depletion force between taken into account in addition depend§ on the “experimen-
two repulsive, parallel plates at a distanbeconfining a dilute @l setup. In the case that the force is measured between
p0|ymer Solution in terms Of the sca"ng Variaky@ D/RX [see p|ateS |mmersed In a container f|”ed W|th the d'lute polymer
Egs. (2.19 and (2.19]. R,=\2R, for ideal chains andR, solution such that solvent and polymer coils can freely enter
=1.444R in a good solvent for a bulk solutidisee Eqgs(4.2) and the slit from the reservoir, only the scaling functiofsand
(4.3 below], where Ry is the radius of gyration. For ideal chains I' are relevant. This is also true for the particle-wall geom-
the full expression, which is valid in the whole rangeyofsolid  etry discussed in Sec. IV. But if no exchange is allowed, as
line; see also the insgtand an expansion of this expression, which for the Monte Carlo simulation discussed in Sec. lll, the
is valid fory=1 (dashed ling are shown. The same expansion is force K defined in Eq.(3.2) is needed.
shown for chains in a good solvefdotted ling. The dotted line
stol%sllwhere the dashed line starts to deviate appreciably from thg ~oMPARISON WITH MONTE CARLO SIMULATIONS
solid line.
Monte Carlo simulations of polymers are well established
Figure 1 shows the universal scaling function for the freeboth for ideal chains and for chains with self-avoidance. In

energy of interaction this section we compare our results with the simulation of a

polymer chain between two repulsive walls by Milchev and

A(y)= iéf (2.18 Binder [14] which corresponds to the case studied theoreti-
Ry cally here. These authors use a bead spring model for the

. ] ) self-avoiding polymer chain with a short-ranged repulsive
with &f from Eq.(2.99 and the corresponding scaling func- jnteraction between the beads.

tion for the force In Refs.[9] and[14] (see in particular Fig. 4 in Ref14])
do(y) it is stated that the total forck between the two walls is
I'(y)=- d—y (2.19 repulsive and diverges in the narrow slit limit, i.e.,
y
int f th li iabl DK ( b )_UV (3.1
in terms of the scaling variable —o| — , .
9 keT | Ry

y=DIRy. (2.20 . . . :
where v=3 for ideal chains and’=0.588 for chains with

Figure 1 shows both the behavior for ideal chains and folEV interaction, andR, is the radius of gyration of the poly-
chains with EV interaction. For chains with EV interaction mer chain in unbounded spaldst]. [For the definition ofR
the present theoretical approach can only capture the behasee Eqs(4.2) and (4.3 in Sec. IV] The qualitative differ-
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100 - the present field-theoretical approach. The deviation of the
) Monte Carlo simulation data at large valuesfR, from

the power-law behavior at small values iRy (dashed
line) occurs becaus®K/kgT tends to 1 for largeD/ Ry,

. which is not captured by Ed3.1).

Figures 5-9 of Ref[14] show density profiles for the
simulated chains with EV interaction, including a compari-
son with the analytical result for the profile of ideal chains in
the slit (Fig. 9 in Ref.[14]). We want to mention here that
the field-theoretical treatment of the monomer density for
chains with EV interaction requires a perturbation expansion
involving integrals overGXGXGXG instead of GXG
X G (see the Appendjxand thus in view of the technical
challenges is beyond the scope of the present study. Alterna-

-1.7

.~ (DRy)

DK/(k;T)
=)

10 ] 1 tive information about the monomer density profiles beyond
: the ideal behavior can be found in R¢B4] in which a
D/R, self-consistent mean-field approximation is used to obtain

the monomer density profiles for a single polymer chain be-

FIG. 2. Depletion forceC [Eq. (3.2)] between two parallel walls tween two repulsive walls.

at distanceD confining repulsively a dilute polymer solutioR. is
the radius of gyration of the chaifsee Egs(4.2) and(4.3)]. The
solid circles correspond to the Monte Carlo simulation data in Ref. IV. COMPARISON WITH EXPERIMENT
[14]. The force obtained from Ed3.2) is shown for ideal chains
(solid line) and self-avoiding chaingdotted ling. The latter line
stops where the expansion for larfg’R, turns out to become
unreliable. The dashed line represents the asymptotic behavior

Rudhardt, Bechinger, and Leidelé&] have measured the
depletion interaction between a wall and a colloidal particle
gpmersed in a dilute solution of nonionic polymer chains in
small distances for chains in a good solvisee Eq(3.1)], witha & good solvent by means of total internal reflection micros-

fit for the amplitude of the power-law behavior. FBIRy— the cppy(TIRM). They mqnitore(_j the fluctuations of _the relative
reduced forced K/ (ksT) tends to 1. distance of the colloid particle from the wall induced by

Brownian motion. From the resulting Boltzmann distribution

ence from the scaling functiofi(y) presented for the force ©ONe can infer the cgrresponding effectivg depletion potential
in Sec. Il C is explained by the following arguments. The ~ between the repulsive wall and the particle. _
total force between the walls is repulsive due to the contri- N order to compare these experimental data with our re-
bution from the cost in free energy caused by the loss of th&ults we apply the Derjaguin approximatigBg]. In the limit
total available space for the polymer chains within the slit,(hat the radiuR of the spherical particle is much larger than
i.e., the bulk pressure f,, contributes to the total forcgb) ~ POth Ry and the distance of closest approach surface to
The total forcek diverges due to the change from the grandsurface between the particle f_;lnd the_ wall, the part_lcle can be
canonical to the canonical ensemigiee Sec. Il B In the 'egarded as composed of a pile of fr2|nges. Each fringe builds
simulation in Ref[14] the numbe, of polymers in the slit @ fringelike slit with distanc® =a+r{/2R, wherer is the
is given by one polymer in the slit volume. Therefore we radius of the fringe. Thus the interaction between the particle
obtain the total forceC by differentiating Eq.(2.13 with ~ and the wall is given by
respect to the slit widtld and by settingN,=1, i.e.,

q)dep(a)

" = 2 - ®
DK 1 d noksT ZWRRXfodvU

kB_T:;E(D w), (32)

2

E'ﬁ‘; , (41)

wherewv is a dimensionless variable a®@\y) is the scaling

where D w=—Q/(ny,kgT A) is given by the rhs of Eg. function for the free energy of interaction for the slit geom-
(2.99 in conjunction with Eqs(A5) and (A6) in Appendix  etry [see Eq(2.18].
A. The |hs of EQ.(3.2) corresponds to the quantipf in In Ref. [6] the interaction potentiad 4p(a) is measured
Ref. [14]. for nonionic polymer chains in a good solvent for polymer

Figure 2 shows comparison of the simulation data of Refnumber densities, =0, 7.6, 10.2, 12.7, and 254m~ 3. All
[14] and the corresponding theoretical result from 352,  these polymer number densities represemiilate polymer
the latter for both ideal chains and chains with EV interac-solution so thatb (@) is a linear function o, [see Eg.
tion. Note that the theoretical curve for chains with EV in- (2.1)]. Therefore our results are applicable and Fig. 3 shows
teraction is valid only for larg®/Ry. The curve for chains  ®yep /N, as a function of. The crosses in Fig. 3 correspond
with EV interaction is closer to the simulation data than theto those values o& for which the above mentioned linear
curve for ideal chains, in agreement with the fact that thebehavior®ye,e<n, (not shown is in good agreement with
polymer chain in the simulation is a self-avoiding one. Onethe experimental data. Deviations from the linear behavior
possible reason for the remaining deviation might be that theb 4¢,e<n,, for small and large particle-wall distancas(not
chain in the simulation is too short to be fully described byshowr) can be explained by the experimental method TIRM
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0 ' ' = Ry=0.6927R,, d=3. 4.3
Figure 3 shows that the experimental data of Héf.

_ -0 deviate from the theoretical result derived here. Note that
g this deviation is not visible if the polymer size is used as a
= freely adjustable parameter in order to gain agreement be-
= tween the experimental and theoretical data. The theoretical
o 02 curve for chains with EV interaction, as realized in the ex-
ff“ periment, is everfurther awayfrom the experimental data
~ /7 o x exporimental data than the th(_aoretical curve fo_r ideal c_hains. T_he latter obse_r-
e§ -03 , 82" el chains with Ry=0.101 m . vation confirms the necessity of reinterpreting the experi-

mental data, e.g., by adjusting the radius of gyration. This
_ _- \dosl chains with R - 0.13 un can'be dqne such that agree_ment'with the theo_retical dqta for
o4 ° . S chains with EV interaction is gained for the intermediate
0 0.1 0.2 0.3 values of the distance where the linear relationsiig.p
a[um] «n, allows for a direct comparison with the theoifythe

FIG. 3. Depletion interaction potentiabg,(a) between a remaining d|ffere.nces outs!de this |qtermed|ate regiog ( .
spherical colloidal particle immersed in a dilute polymer solution pose a separate issue as ,d'SCUSSEd in the paragraph following
and the container wall as a function of the distamcef closest ~Ed- (4.1).] However, the difference between the two theoret-
approach surface to surface between the sphere and théseall ical curves for ideal chains and chains with EV interaction is
Eq. (4.1)]. The interaction potential is given in units lb§T and of ~ Small compared to the deviation from the experimental data.
the polymer number density,. The circles and crosses indicate ANy attempt to use the Monte Carlo data obtained in Ref.
the experimental data from Ré6]. Crosses show the range where [14] for predicting the depletion interaction between a col-
the linear relationshif e, N, allows for a direct comparison with  loidal particle and a wall would require two integrationstof
the theoretical results. The theoretically calculated depletion interand a change to the grand canonical ensemble, which poses
action is shown for ideal chainsolid line) and chains in a good prohibitive accuracy problems. Nonetheless, a qualitative
solvent (dotted ling as realized in the experiment. These curvesstatement can be given easily. Figure 2 shows that the force
correspond to the valugy=0.101um, which has been determined obtained in the Monte Carlo simulation is weaker than the
by independent experimenfsee Egs(4.2 and (4.3)]. Using the  force calculated for chains with EV interaction. This is also

radius of gyration as a fit parameter yields the dashed line COfreexpected to hold for the dep|etion interaction between a par-
sponding toRy=0.13 um and ideal chains. ticle and the wall.

------- chains in good solvent with Rg = 0.101 pm

used in Ref.[6]: a higher interaction potential implies a
lower probability of finding the particle at the corresponding
distance, causing lower accuracy. It turns out that the total Based on field-theoretical techniques we have determined
interaction potential as the sum of depletion potential, electhe effective depletion interaction between two nonadsorbing
trostatic repulsion, and gravity is highest for short and largewalls confining a dilute solution of long flexible polymer
distances, which are those where the linear relationshighains. Our main results are the following.
D gepenp is not confirmed experimentally. Figure 3 also (1) The field-theoretical calculation yields the universal
shows the corresponding theoretical predictions for the exscaling functions of the depletion interaction potential and
perimental data, for both ideal polymer chains and chainshe corresponding force for ideal chains and for chains with
with EV interaction, i.e., chains in a good solvent as realizecexcluded volume interaction in the limjt=D/R,>1, where
in the experiment. Note that all parameters entering thesp is the separation between the walls agis the projected
theoretical predictions aréixed by available experimental end-to-end distance of the chaifsee Eqs(2.19, (2.19,
data forn,, a, and’Ry, i.e., there are no freely adjustable and(4.3) and Fig. 1. The depletion potential is weaker for
parameters. In particular, the radius of gyrati®y of the  chains in a good solvent than for ideal chains.
polymer chains used in Ref6] has been measured fairly  (2) Fory=1 we find fair agreement with corresponding
accurately by means of small angle scattering of x {@@,  Monte Carlo simulation datfl4] if the excluded volume
resulting inRy=0.101 um. According to the definition of interaction is taken into accoufgee Fig. 2 We surmise that
R4 as measured in small angle scattering experimg8its  remaining discrepancies are due to higher order terms in the
i.e., field-theoretical calculation which are not yet taken into ac-
count, and due to the possibility that the length of the simu-
lated polymer chain has not yet reached the scaling limit for
f dsrf dr’p(Np(r')fr—r'|? which the field theory is valid.
2 , (4.2 (3) Using the Derjaguin approximation we have compared
Zf dsrf A3 p(r)p(r’) our theoretical results with the experimental dighfor the
depletion potential between a spherical colloidal particle and
a wall (see Fig. 3. We obtain a fair agreement only if the
wherep(r) is the monomer density, id=3 one had38] radius of gyratioriR, of the polymers is used as a fit param-

V. CONCLUDING REMARKS AND SUMMARY

R

g
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eter. This value, however, differs from independently deterywjith the Gaussian propagat@(p,z,z’;t,,D) in p-z repre-
mined values forRy. The reasons for these differences aresentation given by32,39

not yet understood The excluded volume interaction be-
tween the monomers of the polymer chain plays only a mi-
nor role for reaching agreement between theory and experi- é(pyz,zl;to,D)
ment.

e—b(z—z’)+ e—b(z’—z)

eZbD_ 1
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e~ b(z+2") + eb(z+ z')
: (A2)

APPENDIX

The Gaussian two-point correlation function in the slit of ,(t; D, u,)= fDddeé(O,z,z’)— Yo AEIDdZdZdz”
width D reads 0 2 3

(Di(r) @i(r"))o]

dd lp _ ~
xfﬁG(O,z,z”)G(p,z”,z”)
=38, G(r,r';tg ,D) (2m)

=38, G(Irj=r{l.zz";to D) xG(0,2',2')+O(ug). (A3)

dd—lp . _
=9 Jﬁexr[lp-(r—r|’)]G(p,z,z’;to,D), The procedure outlined in Sec. 11 A of RdR5] yields the
(2m) renormalized total susceptibility in one-loop order @se

(A1) also Appendix B of Ref[40Q]):
|
2 1-e 7 N+2 2 e V" 1-e'”
— 2 3 _ . -3
X 7= (D) LD U D= e m T T ﬁ+2ﬁ(1+e‘\’7)2 1+e”
Js2—1
X|2f1+2In(Du)—In7+In(47)+1—Cg— Sf ds T]J
1/2 1\3+e V(2—3)+e 27 (1/2- 1/{3)
(1+e 72
1 e " \/s - 2 2 1
_ 2
1+e \Tf 2\7'5 1+ 1+S—1 s+1 +O(U ) (A4)
S+§ S_E

Here n is the inverse length scale which determines themalized total susceptibility for the unbounded spagg, -

renormalization group flow; andu are the renormalized and The decomposition into bulk, surface, and finite-size contri-

dimensionless counterparts f andug, respectively,Cg is
Euler’s constant; and for the definition of the constintve
refer to Ref[25].

butions is carried out by analysis of the scaling behavior of
these parts of the free energy. The surface and finite-size
parts of the free energysee Eq.(2.9)] at the fixed point of

The free energy is obtained via the inverse Laplace tranghe renormalization group and fox¥'=0 with the scaling
form of x,.(D) and normalization by the transformed renor- variabley=D/R, are given by

041803-7
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—y \/> € 3 n2 = =« A5 +0(e?), (A6)
- 2 2t W | |
where e, In Eq. (A4) is expanded for large plate separa-
and tions D up to orderO(e™ "52;), because for small distances
the correct behavior including the dimensional crossover
5_f_4 ; Yy _4 \EE 2P cannot be obtained even for the full expression. But using the
D er \/5 Wye expansion has the additional benefit of yielding partly ana-
Iytical results for the separatiori3 of interest here. Fod
e e Y2 ) =3, R, is related to the radius of gyratioRy by Eq. (4.3).
y2m 4+ T—4W+6 In(2y*) —6Cg The full result for ideal chains fosf is given by Eq.(A4)
y foru=0, i.e.,
rertd || 20— 2T 2 1n(2y?) + 2C
eric ——= T ——=—<2In(2y E 4 1
J2 V3 8f=—DL, ym2| — ——— (A7)
U 82 4 o7 |
; l{e ‘Tlnr} as e Vinr
i TV T which is valid for ally.
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